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In this paper I build a unified model of economic growth to account for the time-series
evolution of output, fertility, and population in the industrialization of an economy.
Specifically, I merge the unified growth models of Galor and Weil [American Economic
Review 90 (2000), 806–828] and Hansen and Prescott [American Economic Review 92
(2002), 1205–1217] to capture the importance of human capital formation, fertility
decline, and the transition from agriculture to industry in transition from stagnation to
growth. Moreover, I also incorporate young adult mortality into the model. Initially, the
aggregate human capital and return to education are low and the mortality rate is high;
therefore parents invest in quantity of children. Once sufficient human capital is
accumulated and mortality rates are reduced, thanks to increasing life expectancy, with the
activation of the modern human capital–intensive sector, parents start to invest in the
quality of their children. The simulation of the model economy improves upon the
quantitative performance of the existing literature and successfully captures the evolution
of fertility, population, and GDP in the British economy between 1750 and 2000.
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1. INTRODUCTION

The process of industrialization or in broader terms economic development can be
categorized into three stages [Galor and Weil (1999, 2000), Hansen and Prescott
(2002), Galor (2005)]. The first stage is called the Malthusian stage, where low
(or no) population growth goes hand in hand with low (if any) growth in output
per capita. In the second stage of development, called the post-Malthusian stage,
technological progress rises and both output per capita and population grow,
meaning that the growth rate of output is higher than the growth rate of population.
Finally, there is the modern stage,1 where output per capita continues to grow,
whereas the population growth is low (if any).
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Even though there are no strictly defined time periods for the three stages, the
Malthusian stage accounts for most of history up to the end of the 1700s quite
well. Galor and Weil (1999, 2000) and in particular Galor (2005) characterize
this stage as one with little education or human capital, low productivity, and a
high gross reproduction rate but much a lower net reproduction rate (due to high
mortality), in turn leading to low population growth. The industrial revolution,
starting roughly sometime between 1760 and 1840 [Floud and McCloskey (1994)],
leads to the second stage, the characteristics of which lasted up to the twentieth
century. The fertility rate did not decrease much in the transition [Galor and Weil
(1999, 2000) and Galor (2005)], but the greater reduction in mortality (or increase
in life expectancy)2 led to an increase in population. However, the growth rate
of output was higher than the growth rate of population, so in this stage output
per capita increased and living standards improved, contrary to the well-known
predictions of the Malthusian growth theory. Finally, the modern stage, in which
population growth rates started to decline, began approximately in the first half of
the twentieth century. The main characteristics of this stage are low fertility and
mortality, increased level of education and human capital, and high productivity
growth. The characteristics of this stage, along with those of the previous ones, are
well documented by Galor and Weil (1999, 2000), Hansen and Prescott (2002),
Doepke (2004), Galor (2005), Bar and Leukhina (2010), and more recently Galor
(2010).

The main purpose of this paper is to build a unified model of economic growth
and demographic change that can account for the characteristics of growth in
output and population through the process of economic development in the United
Kingdom as described in Lucas (2002). The model constructed in this paper is
a combination of the Malthusian and Solow growth models with an additional
human capital–intensive production function that allows for spillover effects. It
is a standard general equilibrium growth model with overlapping generations
and endogenous fertility decision. On the production side there are two different
technologies that differ in their total factor productivities (TFP) and use of factors.
The first one, called the primitive technology, is assumed to employ effective
labor (the product of number of workers, the portion of time devoted to work
by each worker, and the level of human capital that each worker possesses),
reproducible capital, and a fixed amount of land. The second technology, titled the
modern production function, does not use land as an input, but employs effective
labor and capital only, and also allows spillover effects. Human capital for each
worker depends on the education of the worker, determined by his or her parents
and the rate of technological change, as in Galor and Weil (2000) and Lagerlof
(2006). Moreover, I also introduce mortality into the model by assuming that each
generation of households may live up to two periods, but only a fraction of them,
depending on the young-adult mortality rate, survive to the second period. With
the help of this specification, in equilibrium I am able to obtain a formula for
optimal fertility level as a function of technological improvement, mortality, and
education. Initially, only the primitive sector is active, the aggregate human capital
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and return to education are low, and the mortality rate is high; therefore parents
have more incentive to invest in quantity of children. Once sufficient human capital
is accumulated and mortality rates are reduced, with the activation of the modern
human capital–intensive sector, parents have more incentive to invest in the quality
of their children.

The numerical exercise I present at the end of the paper reflects the character-
istics of the three periods discussed in the beginning. The simulation is done for
nine periods corresponding to 300–350 years.3 Assuming that the model economy
starts in the early eighteenth century, I track the evolution of the variables of the
economy up to the end of the twentieth century. The model generates series for
output, output per capita, and fertility and population growth that successfully
match the data from the British economy.

This paper is related to various other works in the literature. In accounting for
the transition, the model embodies elements from Tamura (1996), Galor and Weil
(2000), Stokey (2001), Hansen and Prescott (2002), Lagerlof (2006), and Bar
and Leukhina (2010). Moreover, the representative agent’s maximization problem
with endogenous fertility is similar to the one used in unified growth theory by
Galor and Weil (2000) and many others.

In the related literature, Galor and Weil (2000) and Hansen and Prescott (2002)
deserve more discussion, as they are closely related to the present study.

Galor and Weil (2000) is the main point of departure of the model with respect
to individual decision-making and the production of human capital. They present
a one-sector OLG model with endogenous technological progress and fertility to
account for the evolution of output, population, and technology.4 The present study,
even though largely consistent with their results, extends their paper with important
modifications and differences. Specifically, as Galor (2005) also mentions, the
analysis of Galor and Weil (2000) does not explicitly incorporate the structural
transformation from a primitive technology to a modern one. In my paper, however,
this transformation explicitly exists and contrary to Hansen and Prescott (2002),
it is related to human capital accumulation. This is one of the key mechanisms
generating the evolution of population in the model. Furthermore, adding young-
adult mortality to the model helps to account for the different behavior of fertility
and population growth rates in the data. Finally, the present study also complements
Galor and Weil (2000) by quantitatively accounting5 for the evolution of output,
population, and fertility in the United Kingdom through and after the industrial
revolution. In summary, the present study nicely fits the ideas proposed in Galor
and Weil (2000) and complements the related literature.

Hansen and Prescott (2002) is the other point of departure of this study, espe-
cially for the production side of the model. Similarly to the present study, they
develop an OLG model with two sectors in which the economy shifts from an
agricultural sector to an industrial sector in the course of economic development.6

However, unlike other unified growth theories and the model presented in this
paper, their model simply assumes population growth to be a function of growth
in consumption, thereby lacking microfoundations for factors behind its transition.
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FIGURE 1. Population.

Moreover, human capital formation, which appears to be one of the central forces
in the unified growth literature, is absent in Hansen and Prescott (2002). As Galor
(2005) also argues, such a reduced-form analysis does not identify the economic
factors behind the process of technological change, nor the forces behind the
demographic dynamics. The main value added by the present study, on the other
hand, is filling in the gap in Hansen and Prescott (2002) by incorporating human
capital formation with microfoundations and endogenous population dynamics
into the model. This allows to better identify the economic factors behind the
evolution of output and population, as well the factors behind the process of
technology change. Specifically, it shows that human capital plays a central role
in sustaining the rate of technological progress in the industrial sector and in
generating the demographic transition.

The rest of this paper is organized as follows: In the next section, I discuss
some empirical facts from United Kingdom to motivate our model. In Section 3,
I present the model economy, define a competitive equilibrium, and solve it.
Simulation of the model economy in its transition through the three stages is
then presented in Section 4. Finally, I offer concluding remarks in Section 5. The
Appendix presents an easy proof of Proposition 2 of Section 3.

2. EMPIRICAL MOTIVATION

The claim that the economic history can be analyzed in three periods can be easily
validated when one looks at historical data. One can see the different characteristics
of the three periods by looking at GDP, GDP per capita, and population figures.
Figure 1 below7 illustrates the behavior of the population of the United Kingdom
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FIGURE 2. Population growth rate.

after 1700. The increase in population in the long run is obvious. But more
important is the slope of this curve, namely, the growth rate of population over
time.

Figure 2 shows the population growth rate derived from the data in Figure 1.
Even though there are some fluctuations, the trend is that the growth rate jumps
from a very low level to a higher level after the start of the industrial revolution and
then decreases over the long run almost to its original level. Excluding the fluctu-
ations, and looking at the trend, this picture confirms the demographic transition
in the three different stages that we hypothesized in the previous section.

There are various reasons that population statistics follow such patterns. De-
composing the growth rate of population to observe the fertility and mortality
rates can be a step toward that purpose. For that purpose, Figure 3 documents the
evolution of the gross reproduction rate (GRR) and the average life expectancy in
England.8 The gross reproduction rate, which was slightly above two before the
industrial revolution, jumps to almost three in the 1820s but decreases thereafter
almost to one at the end of the 20th century. In the OLG model economy that
we will discuss in the next section, the mortality rate will be the probability that
the representative agent born at period t will die before t + 1, which has no
counterpart in the data. Therefore, throughout the simulation, we will assume that
the average life expectancy documented in Figure 3b has a negative relationship
with the mortality rate in our model, even though the form of this relationship is
unknown. (A specific functional form will be assumed to capture this relation later
in the paper.) For now, the data show that the average life expectancy increases
uninterruptedly after the industrial revolution. Notice that the increase in GRR
and life expectancy positively affects population growth. But when the GRR starts



www.manaraa.com

A THEORY OF ECONOMIC GROWTH 691

FIGURE 3. (a) Gross reproduction rate; (b) average life expectancy.

to decrease over time, the population continues to grow as the life expectancy
becomes higher. Toward the end of the twentieth century, growth in life expectancy
ceases and GRR decreases (almost to one), which accounts for the slowdown in
the population growth rate.

Figure 4 looks9 at GDP and GDP per capita in the United Kingdom. The
increasing trend of both variables after the industrial revolution is obvious. As

FIGURE 4. (a) GDP; (b) GDP per capita.
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discussed in the Introduction, prior to the industrial revolution, the growth in GDP
is balanced by the growth in population, so that the growth in GDP per capita is
low (if any). But in the second stage both variables start to grow uninterruptedly.

As a summary of these figures, we can conclude that the three stages that are
discussed in detail in the previous section are observable from the documented
data. Now I build a model to explain these observations.

3. THE MODEL

3.1. Households’ Problem

Overlapping generations live for two periods. A young household born in period
t has the following utility function:

log ctt + β(1 − ξt ) log ctt+1 + γ n1−ε
t ht+1(et+1). (1)

Here ctt is consumption by the young household in period t , whereas ctt+1 is its
consumption when old. ξt is the probability that the young household does not
survive period t . Besides its own consumption, the representative household can
choose the number of children it is going to have, nt , and the amount of education
it should invest in for its children, et+1. γ and ε are simply parameters that show
the level of altruism the household has toward its children.

Human capital evolves according to the equation

ht+1(et+1, gt ) = ψ(et+1, gt+1), (2)

where gt+1 is the rate of average technological progress, which will be defined in
more detail with technology. I further assume that ψ satisfies ψe > 0, ψee < 0,
ψg < 0, andψgg > 0. The first two conditions indicate that education increases the
level of human capital, but at a decreasing rate. For the other two conditions, the
assumption is that faster technological progress erodes human capital by making
knowledge obsolete, but at a decreasing rate.10

Throughout the simulation, I will assume the following functional form for the
human capital accumulation function:

ht+1(et+1, gt+1) = ψ(et+1, gt+1) = a + bet+1 − gt+1

a + bet+1 + gt+1
. (3)

This form obviously satisfies the four properties listed above.11

At any period t , the young agent born at t can spend his or her income for
consumption, ct , buying capital, kt+1, or land, lt+1. He or she earns rent from
capital and land in the next period. Note that the depreciation rate is assumed to
be equal to 1. The agent’s labor income at period t depends on the wage rate,
wt , the level of human capital that the agent possesses, ht (et ), and the amount of
time that he or she spends working, zt . The more time he or she spends at work,
the less education he or she can provide for his or her nt children. Parameters a
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and b represent the time cost of raising children.12 (In the simulation, they will be
assumed to be fixed numbers.) The agent does not work at t + 1.

Accordingly, the households’ budget and time constraints are given by

ctt + kt+1 + pt lt+1 = wtht (et )zt , (4)

ctt+1 = rK,t+1kt+1 + (pt+1 + rL,t+1)lt+1, (5)

zt + nt (a + bet+1) = z̄, (6)

where pt stands for the relative price of land.

3.2. Technology

The model I present in this paper is an OLG model with two different technologies.
The primitive sector employs land, effective labor, and physical capital to produce
output. The second sector, called the modern sector, does not employ land. The
production functions are given by

YPt = APtK
αP
Pt
H
θP
Pt
L

1−αP−θP
Pt

, (7)

YMt
= AMt

η(St )K
αM
Mt
H

1−αM
Mt

. (8)

The variables Ai , Yi , Ki , Hi , and Li refer to TFP, output, physical capital,
effective labor, and land in sector i ∈ {P,M}. I also assume that APt = AtP and
AMt

= AtM . This means that TFP in both sectors grow at an exogenous rate.
Remember that gt is defined to be the rate of technological progress of the

economy. With these two production functions in hand,

gt+1 = At+1 − At

At
, (9)

where At+1 is simply a weighted average of APt+1 and AMt+1 ; i.e.,

At = YPtAPt + YMt
AMt

η(St )

Yt
, (10)

where Yt = YPt + YMt
. So even though TFP in the two sectors grow at exogenous

rates AP and AM , the aggregate TFP At is a function of various endogenous
variables of the model.

Throughout the model, land does not depreciate and is fixed at 1. Because only
the primitive sector employs land, this will imply that LPt = 1 for any period t .

Consistent with the names of the production functions, the modern sector will
be capital-intensive and effective labor–intensive compared to the primitive sector.
Therefore, throughout the paper it will be the case that αP < αM and θP < 1−αM .

The modern sector exhibits spillover effects, which are represented by the
function η(St ), where η′(St ) > 0, η′′(St ) < 0, and St = Ntht is the total level
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of human capital in the economy. Note that this specification is not new in the
literature.13

Because the depreciation rate for physical capital is assumed to be 1, the feasi-
bility constraint of the economy14 is given by

Ctt + Ct−1
t +Kt+1 = YP t + YMt . (11)

For simplicity it will be convenient to assume that the same firm operates in
each sector alone. Given values for Ai , w, rK , rL, and St , this firm solves the
following maximization problem subject to the production functions

max Yi − wHi − rKKi − rLLi i ∈ {P,M}. (12)

3.3. Equilibrium and Characterization

Given N0, k0, and ξt (and assuming that Lt = 1 for all t), a competitive equi-
librium in this economy is defined to be sequences of household allocation
{ctt , ct+1

t , kt+1, lt+1, zt , nt , et+1}, firm allocations {KMt
,KPt , HMt

,HPt , YMt
, YPt },

and prices {pt , wt , rK,t , rL,t } such that, given prices,

(1) Households maximize their utility subject to the budget constraints specified above.
(2) The representative firm maximizes its profits subject to the production functions.
(3) Market clearing conditions hold. Specifically,

HMt +HPt = Ht = zthtNt , (13)

St = htNt , (14)

LPt+1 = Lt+1 = lt+1Nt = 1, (15)

KMt +KPt = Kt = ktNt−1, (16)

Ctt + Ct−1
t +Kt+1 = YMt + YPt , (17)

Nt+1 = ntNt . (18)

Here are some theorems that are worth stating before I solve for the competitive
equilibrium:

PROPOSITION 1. For any wage rate w and capital rental rate rK , the firm
finds it profitable to operate in the primitive sector. This implies that YPt > 0 for
all t .

Proof. The proof of this proposition is in Hansen and Prescott (2002).

PROPOSITION 2. Given a wage ratew and a capital rental rate rK , maximized
profit per unit of output in the modern sector is positive if and only if

AMt
>

1

η(St )

(
rK

αM

)αM (
w

1 − αM

)1−αM
. (19)

Proof. The proof of Proposition 2 is presented in the Appendix.
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To make use of these propositions, in some period t one should first calculate

wt = APt θPK
αP
t H

θP−1
t (20)

and
rKt = APt αPK

αP−1
t H θP

t . (21)

If Proposition 2 does not hold under these prices, then these are the equilibrium
wage and capital rental rate. If Proposition 2 holds, then these are not equilibrium
prices; instead, one should use the following system of equations:

wt = APt θPK
αP
Pt
H
θP−1
Pt

= AMt
η(St )(1 − αM)K

αM
Mt
H

−αM
Mt

(22)

and
rK,t = APt αPK

αP−1
Pt

H
θP
Pt

= AMt
η(St )(αM)K

αM−1
Mt

H
1−αM
Mt

. (23)

In each period t , using these equalities and the market clearing conditions, it is
straightforward to calculate KPt , HPt KMt

, and HMt
.

Now consider the households’ maximization problem: First note that from the
first-order conditions one directly obtains an expression for et+1, which directly
determines ht+1:

et+1 =
(
λgt+1 − a

b

)
, (24)

where λ > 0 is a constant, namely a function of some parameters of the model.15

First-order conditions also yield

pt+1 = ptrK,t+1 − rL,t+1. (25)

Moreover, the budget constraint implies

Nt(wtztht − ctt )− pt = Kt+1, (26)

and when I combine the budget constraint and first-order conditions, I obtain

ctt = wthtzt

1 + β(1 − ξt )
. (27)

Last, from first-order conditions one can derive

nεt = γ (1 − ε)ht+1zt

[1 + β(1 − ξt )](a + bet+1)
. (28)

Equations (28) and (6) yield a system of two equations and two unknowns: nt
and zt . Given values of the parameters and ξt , it is straightforward to solve for
both of them. Careful examination of equation (28) reveals that nt also depends
on the rate of technological progress through et+1. Everything being equal, this
captures the Malthusian idea that technology may limit population growth, as in
Kremer (1993).
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TABLE 1. Values for basic parameters in the benchmark model

Parameter Description Value

AP TFP in the primitive sector 1.032
AM TFP in the modern sector 1.518
αP Capital share in the primitive sector 0.1
θP Effective labor share in primitive sector 0.6
αM Capital share in modern sector 0.4
β Discount rate 1
γ Degree of pure altruism of parents toward children 0.675
ε Constant elasticity of altruism per child 0.49
a Fixed cost of each child 0.15
b Educational cost of each child 1
z̄ Total amount of time 20

Notice thatNt is the number of young agents (or workers) at any time t , whereas
population at t is given by this number plus the number of old agents at time t ;
i.e.,

πt = Nt + (1 − ξt−1)Nt−1. (29)

So the population growth rate from t to t + 1 is given by

πt+1 − πt

πt
= Nt+1 + (1 − ξt )Nt − [Nt + (1 − ξt−1)Nt−1]

Nt + (1 − ξt−1)Nt−1
. (30)

4. SIMULATION

Notice that, given the parameters and the sequences of {AMt
, APt }tnt=0, initial capital

stock, and initial number of young agents (K0, N0, respectively), the initial price of
land p0, and the mortality ξt , all equilibrium allocations can easily be calculated.
One complication is that, to compute p0, I use a numerical (recursive) shooting
algorithm similar to one used in Hansen and Prescott (2002). Moreover, note that
gt+1 (which is one of the determinants of et+1 and hence of zt ) depends on At+1,
the value of which is unknown in period t because it depends on shares of the two
sectors in period t + 1. This requires using the numerical shooting algorithm to
accurately obtain gt+1 in period t . I will describe the process in more detail below.

Before the discussion of the simulation exercise, there is one more task: choosing
values for various parameters of the model. Most of the chosen parameters are
consistent with the existing literature. Table 1 documents the values chosen for
the key parameters of the benchmark model with mortality.

My choice of AP , AM , αP , θP , and αM is from Hansen and Prescott (2002).
Moreover, the values of a and b are from Lagerlof (2006). I calibrated ε and
γ to match the GRRs and population growth rates in 1716 and 1751. Finally, I
normalized z̄ to a value of 20.
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For the modern sector, the form of the spillover effect is assumed to be given by

η(St ) = St + ν

St + 1
, (31)

where ν is less than 1. First, notice that this specification of the function
satisfies the desired properties stated above. Furthermore, because the initial
conditions are chosen so that the modern sector is idle at t = 0, this requires that
ν < 0.41.16 Various values are experimented with, and the reported simulation of
the benchmark model takes it to be equal to 0.2.

Moreover, I need values for ξt , which is the probability that the household does
not survive to the second period. The evolution of the average life expectancy in the
United Kingdom is plotted in Figure 3b. Assuming that each period in the model
corresponds to a period of 35 years and the life expectancy in the United Kingdom
is normally distributed with the mean values plotted in Figure 3b and a standard
deviation of 25 years,17 I can calculate ξt . With this I now have all information to
do the simulation. To clearly understand the effect of ξt on the model, I run two
simulations. In one of them I feed in ξt ’s that I calculate from the data into the
model in the way I describe above. In the second simulation, denoted by “model
without mortality,” I assume that there is no mortality whatsoever, i.e., ξt = 0.

The simulation basically works as follows:
Because I assume that the economy initially is in the steady state with the

primitive production function, g0=g−1=AP −1.18 Therefore, I also have e0 and h0.
Given ξ0, AP , AM ,K0,N0, and p0, I can then calculate e1, h1, n0, and z0 provided
that I know g1. However, g1 depends on whether Proposition 2 holds in period 1
or not. Now, if Proposition 2 does not hold in period 1, then g1 is simply equal to
AP − 1. In this case I can calculate e1, h1, n0, and z0. However, if Proposition 2
holds in period 1. Thus, I cannot assume that g1 = AP − 1: because this means
that the modern sector is activated, A1 will not equal AP1 . Instead, it will equal a
weighted average of AP1 and AM1 . To calculate the weights for this average, I use
a shooting algorithm and guess the weights of the primitive and modern sectors
in total production in period 1 and calculate all the above-mentioned variables
accordingly, including the output weights in period 1.19 If my guess of the weights
is above or below the calculated weights, I update my guess and recalculate. Using
this algorithm, I simulate the model economy for nine periods from t = 0. Each
period represents 35 years, as the idea is to simulate the transition of population
and output from the beginning of the eighteenth century up to the third millennium.

Below I present the results of the simulation.
Figure 5 presents the evolution of the population in the model simulations

together with the data. As evident from the figure, the model with variable ξt
closely follows the evolution of the population in the data, whereas the model
without mortality underestimates the level of population. Moreover, one can further
evaluate the model’s performance to account for the population by looking at
Figure 6.
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FIGURE 5. Population: data and model.

In the benchmark model with mortality, the population starts to grow at an
increasing rate after the industrial revolution, but then its growth rate declines, as
it is the case in the data. One reason that the population increases at an increasing
rate is that the mortality rate ξt decreases as the life expectancy goes up. Increasing
life expectancy is also the crucial factor behind the gradual reduction in population
growth. That is also why the population growth declines steadily in the model
without mortality.

FIGURE 6. Population growth rate: data and model.
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FIGURE 7. GRR: data and model.

Next, I plot the fertility rates nt in Figure 7. Note that in the benchmark model
the fertility increases first (which is the other reason that the population increases
at an increasing rate) but then sharply decreases in the following periods, almost
to 1. On the other hand, in the model without mortality, the fertility rate steadily
declines and underpredicts its counterpart in the data.

In Figure 8, I observe what happens to output and output per capita, respectively.
Here, I did not draw the output simulation without the mortality per se, because

FIGURE 8. (a) Output and (b) output per capita: data and model.
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FIGURE 9. (a) Growth rate of average technological progress; (b) fraction of total time
spent on children.

there is no significant difference between the two model simulations. Note that
output slowly increases from period 0, but with a parallel increase in the population,
output per capita remains stagnant. With the industrial revolution this situation
changes and both variables increase together.

Figure 9 shows the average rate of technological progress (gt ) and the fraction
of time spent for each child again in the benchmark model. They follow the same
pattern, because the latter is an increasing function of the former. Time spent for
each child goes from a level of 2% up to almost 21% of total available time of the
parent. This explains the increase in the education and human capital of children.

Last, Figure 10 illustrates the evolution of the shares of the primitive and
the modern sectors. The primitive sector never shuts down, but becomes very
insignificant after the fifth period of the model, whereas the modern sector slowly
becomes the dominant sector of the economy.

5. CONCLUDING REMARKS

In this paper I have built a unified model of economic growth to account for the
time-series evolution of output, fertility, and population in transition through the
industrialization of the British economy. For this purpose, I merged the models
presented in Galor and Weil (2000) and in Hansen and Prescott (2002) to capture
the importance of human capital formation, fertility decline, and the transition
from agriculture to industry in transition from stagnation to growth. Furthermore,
I also incorporated young adult mortality into my model, which made it possible
to differentiate the behavior of fertility and population in certain periods. This
way, the model captures explicitly the shift from a primitive to a modern sector in
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FIGURE 10. Output shares of sectors.

the transition from stagnation to growth, without assuming away human capital
formation and the endogenous determination of population and fertility. Moreover,
the presented simulations of the model economy significantly improve upon the
quantitative performance of the existing literature by successfully capturing the
evolution of fertility, population, and GDP of the British economy between 1750
and 2000.

One extension of the present model can be made by endogenizing the mortality
rate ξt . Considering that life expectancy is foremost affected by living standards,
one way of doing this is assuming that the mortality rate is some decreasing and
convex function of output per capita.

Moreover, the model economy can also be used to quantitatively investigate
behavior of relevant variables in different economies. In this regard, similar sim-
ulations can be performed to explain data from various other European countries,
but lack of data might be a serious issue here.

NOTES

1. Galor and Weil (2000) call these stages Malthusian, post-Malthusian, and modern growth
regimes, respectively. Hansen and Prescott (2002) talk about stages that are only differentiated by the
Malthus and Solow production functions.

2. This is also documented in Nerlove and Raut (2003) and in Clark (2005).
3. As Hansen and Prescott (2002) also do, I assume that each period in the OLG model economy

corresponds to approximately 35–40 years.
4. There are also many studies such as Lagerlof (2006), Weisdorf (2006), and Strulik and Weisdorf

(2008) that use the Galor–Weil model as their benchmark.
5. Lagerlof (2006) is another example of a quantitative study in this regard.
6. Tamura (2002) presents a model where human capital accumulation causes the economy to

switch from agriculture to industry endogenously. In comparison to this paper, I look at a shorter
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period; therefore my model performs better in terms of explaining the short-run fluctuations in the data
after the industrial revolution. Moreover, I also incorporate young adult mortality into the analysis.

7. The data for population are obtained from Wrigley and Schofield (1989) and Wrigley et al.
(1997). In an earlier draft of the paper I also used data presented in Floud and McCloskey (1994) and
Maddison (2007). One important note should be made at this moment for all data used throughout the
paper. To be able to make a better comparison with the simulation, all empirical data presented here
were averaged for 35-year periods from 1716 to 1996; e.g., in the following figure, the population level
for 1951 is not the actual population in that year, but the average population between 1916 and 1951.
One exception is for 1716, where the average is taken from 1701 to 1716. Data from different sources
listed above do not differ significantly, especially once this averaging is applied.

8. GRR data are taken from Clark (2005) and from Office of National Statistics, and life expectancy
data from Arora (2001) and the Human Mortality Website: www.humanmortality.org.

9. Data after 1870 are taken from the Office of National Statistics. Data before that are generated
from the data presented in Broadberry et al. (2010).

10. Galor and Weil (2000) make a further assumption, namely, ψeg > 0. The intuition is that
technological progress increases the return to education or that the erosion of human capital due to
technological change decreases with education. As Lagerlof (2006) also emphasizes, this assumption
is sufficient but not necessary to generate the result that et+1 is increasing in gt+1.

11. Notice that a similar function is also used by Lagerlof (2006). Moreover, this function also
satisfies the fifth property that ψeg > 0, if I restrict ε to be above some threshold level. In the
simulation exercise below this assumption will hold anyway.

12. Robinson (1987) provides a very detailed survey of this literature.
13. See Romer (1986) or Wang and Xie (2004).
14. The implicit simplifying assumption made here is that capital in possession of the young who

do not survive to the next period is automatically transferred to those who survive.

15. Specifically, λ = [ 1
1−ε +

√
1 + ( 1

1−ε )2]/b.

16. For all other values of ν the modern sector is active at t = 0.
17. I should notice that the choice of the variance is somewhat arbitrary here; however, because I

assume a constant variance, it only affects the level of ξt , not its trend, whereas the mean (average life
expectancy) is time-variant and also affects the evolution of ξt .

18. Notice that when At = APt and At+1 = APt+1 , then gt+1 = (At+1
P − AtP )/A

t
P = AP − 1.

19. Note that calculating output weights in period 1 requires knowledge of z1 and e2, which in turn
requires knowledge of g2, etc. Therefore, what I actually guess is an output-weight vector from period
0 to t .
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APPENDIX
Here I provide the proof of Proposition 2.

Proof. First notice that the modern production function is given by

YMt = AMt η(St )K
θ
Mt
N 1−θ
Mt
. (A.1)

Given w and rK , I can write the profit function (for simplicity of notation I drop time
and modern sector subscripts) as

Y − wN − rKK. (A.2)
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The profit per unit is then

1 − w
N

Y
− rK

K

Y
. (A.3)

If I multiply the reciprocal of (33) by N , I obtain

N/Y = 1

Aη(St )

(
N

K

)θ

, (A.4)

and similarly, multiplying the reciprocal of (33) by K , I obtain

K/Y = 1

Aη(St )

(
N

K

)θ−1

. (A.5)

Substituting (36) and (37) into (35), I get

1 − w

Aη(St )

(
N

K

)θ

− rK

Aη(St )

(
N

K

)θ−1

. (A.6)

Now, maximizing this function with respect to N and K , I obtain the following FOCs
(first-order conditions):

− w

Aη(St )
K−θ θNθ−1 + rK

Aη(St )
K1−θ (1 − θ)Nθ−2 = 0, (A.7)

w

Aη(St )
K−θ−1θNθ − rK

Aη(St )
K−θ (1 − θ)Nθ−1 = 0. (A.8)

Both of these FOCs separately imply the same thing, which is

w

1 − θ
N = rK

θ
K (A.9)

or
N

K
= rK(1 − θ)

wθ
. (A.10)

Now what needs to be done is show that

1 − w

Aη(St )

(
N

K

)θ

− rK

Aη(St )

(
N

K

)θ−1

> 0 (A.11)

if and only if inequality (18) is satisfied. To prove this, it is enough to show that (18) and
(A.7) are equivalent.

To show this, I take (A.7), which immediately becomes

1 >
w

Aη(St )

(
N

K

)θ

+ rK

Aη(St )

(
N

K

)θ−1

. (A.12)

Now, using (A.11), this becomes

1 >
w

Aη(St )

[
rK(1 − θ)

wθ

]θ
+ rK

Aη(St )

[
wθ

rK(1 − θ)

]1−θ
, (A.13)
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or

Aη(St ) > w

[
rK(1 − θ)

wθ

]θ
+ rK

[
wθ

rK(1 − θ)

]1−θ
, (A.14)

or
Aη(St ) > w1−θ rθK(1 − θ)θ θ−θ + w1−θ rθK(1 − θ)θ−1θ 1−θ , (A.15)

or

Aη(St ) >
( rK
θ

)θ (
w

1 − θ

)1−θ
(1 − θ + θ), (A.16)

which is simply

A >
1

η(St )

( rK
θ

)θ (
w

1 − θ

)1−θ
. (A.17)
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